MISCELLANEA /

Avanzano le piattaforme di networking AI native

Avanzano le piattaforme di networking AI native

06 Luglio 2024 Gian Carlo Lanzetti
SoloTablet
Gian Carlo Lanzetti
share
Gli esperti di Juniper Networks identificano i principali punti di forza delle piattaforme AI native, di cui l’azienda è convinta fautrice. In questo contesto i data center diventano il cuore dell’AI e le reti giocano un ruolo critico nel massimizzare l’uso dei costosi server GPU.

Una piattaforma AI nativa garantisce la flessibilità e l’automazione necessarie per semplificare le operazioni e aumentare quindi la produttività.

I moderni ambienti IT e applicativi stanno portando verso infrastrutture di rete sempre più complesse. Le piattaforme di networking AI native coprono due differenti casi d’uso: possono essere impiegate nell’ottica dell’AI per il networking, e quindi nel classico contesto AIOps (Artificial Intelligence for IT Operations) a livello di campus e branch, o nell’ottica del networking per l’AI, dove costituiscono una base efficiente per workload AI e ML (Machine Learning) nel data center.

Sia che un’organizzazione utilizzi l’AI per la rete sia che stia sviluppando una rete ottimale per l’AI, una piattaforma AI nativa, sostiene Juniper, garantisce la flessibilità e l’automazione necessarie per semplificare le operazioni, aumentare la produttività e offrire performance affidabili su qualunque scala.

L’AI per ottimizzare le operazioni di rete

Le reti AI native sono la base ideale per implementare i concetti AIOps. Con AIOps, i team IT possono prendere decisioni più rapide e accurate e intervenire prontamente in caso di incidenti su sistemi e reti. Inoltre, le aziende ricevono informazioni contestuali per grandi quantità di dati di telemetria e di log per l’intera infrastruttura in tempo reale o quasi. Ciò si traduce in molteplici benefici, come una migliore esperienza sia per gli operatori sia per gli utenti e la semplificazione e riduzione dei costi operativi per la gestione della rete.

Le performance della rete, precisa una nota aziendale, sono continuamente monitorate e analizzate e gli aggiustamenti vengono effettuati automaticamente al fine di ottimizzare velocità, affidabilità ed efficienza. In più, grazie alla capacità di prevedere i colli di bottiglia e i malfunzionamenti prima ancora che si verifichino, AIOps può applicare misure di manutenzione preventiva per ridurre il downtime. 

Quando si sceglie una soluzione AI driven per la gestione della rete è importante assicurarsi che questa. 

La rete per ottimizzare l’uso dell’AI

L’uso delle reti AI native come fondamenta per connettere gli utenti è solo un lato della medaglia. L’altro aspetto importante è il modo in cui una rete data center è disegnata. I progressi nell’AI generativa hanno posto AI e ML al centro delle agende di molte aziende: i data center sono diventati il cuore dell’AI e le reti giocano un ruolo critico nel massimizzare l’uso dei costosi server GPU.

I moderni cluster AI e ML, agginge ancora la nota, possono comprendere anche migliaia di GPU, essenziali per fornire la potenza di calcolo necessaria per addestrare i modelli AI. In particolare, la domanda di potenti GPU e la dipendenza da InfiniBand proprietari rappresenta una sfida significativa per le imprese.

Supportando la distribuzione dei workload fra le GPU e la conseguente sincronizzazione per l’addestramento dei modelli AI, le piattaforme di networking AI native sono una solida base per la velocità di calcolo e l’utilizzo ottimale delle GPU, poiché riducono sia il tempo di completamento del lavoro (JCT, job completion time) sia il tempo necessario affinché anche l'ultima GPU completi i calcoli (tail latency).

Sul fronte InfiniBand, invece, una soluzione per il traffico di dati AI mission critical aperta e collaudata alternativa diventerà probabilmente Ethernet. Con i prossimi sviluppi a 800 GbE e il data center bridging (DCB), Ethernet garantisce alta capacità, bassa latenza per l’ottimizzazione del JCT, migliore gestione delle congestioni e trasmissione dei dati loss free. 

I vantaggi della soluzione AI nativa 

In conclusione Juniper Networks  ritiene che connettività non sia sempre sinonimo di ottima connessione. L’AI-Native Networking Platform di Juniper è stata sviluppata da zero per sfruttare l'intelligenza artificiale e offrire esperienze utente eccezionali, altamente sicure e sostenibili, dall'edge al data center e al cloud.

“Con una rete AI nativa è possibile supportare un numero crescente di dispositivi, utenti e applicazioni, anche con staff IT limitati”, commenta Mario Manfredoni, senior director South Europe di Juniper Networks. “Le organizzazioni devono anche avere la certezza che la rete possa crescere per supportare i workload AI a livello di data center. Solo così, la rete sarà davvero pronta ad affrontare le sfide del futuro, che rappresenterà una svolta ancora più importante dell’avvento stesso di Internet, in grado di imporre un cambiamento totale rispetto all’attuale approccio al networking”.

Anche per queste ragioni la  Fondazione Milano Cortina 2026 ha siglato con Juniper  un accordo di partnership in vista dei Giochi Olimpici e Paralimpici Invernali di Milano Cortina 2026. La collaborazione mira a ottimizzare i sistemi di rete, oltre a garantire la protezione dei dati e delle informazioni che viaggeranno virtu

comments powered by Disqus

Sei alla ricerca di uno sviluppatore?

Cerca nel nostro database